Lipid nanodomains change ion channel function.
نویسندگان
چکیده
Signaling proteins and neurotransmitter receptors often associate with saturated chain and cholesterol-rich domains of cell membranes, also known as lipid rafts. The saturated chains and high cholesterol environment in lipid rafts can modulate protein function, but evidence for such modulation of ion channel function in lipid rafts is lacking. Here, using raft-forming model membrane systems containing cholesterol, we show that lipid lateral phase separation at the nanoscale level directly affects the dissociation kinetics of the gramicidin dimer, a model ion channel.
منابع مشابه
Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis.
Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical too...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملTransition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
The morphology of monolayers prepared from ternary lipid mixtures that have coexisting fluid phases has been examined by atomic force microscopy for samples transferred to mica before and after exposure to air. Mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol with either egg sphingomyelin or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were studied at several surface pressure...
متن کاملHelium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.
Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), mem...
متن کاملIon channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.
Hydrophobic mismatch which is defined as the difference between the lipid hydrophobic thickness and the peptide hydrophobic length is known to be responsible in altering the lipid/protein dynamics. Gramicidin A (gA), a 15 residue β helical peptide which is well recognized to form ion conducting channels in lipid bilayer, may change its structure and function in a hydrophobic mismatched conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 9 35 شماره
صفحات -
تاریخ انتشار 2017